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ABSTRACT: Chemical oxidants have been applied in water treatment for
more than a century, first as disinfectants and later to abate inorganic and
organic contaminants. The challenge of oxidative abatement of organic
micropollutants is the formation of transformation products with unknown
(eco)toxicological consequences. Four aspects need to be considered for
oxidative micropollutant abatement: (i) Reaction kinetics, controlling the
efficiency of the process, (ii) mechanisms of transformation product formation,
(iii) extent of formation of disinfection byproducts from the matrix, (iv)
oxidation induced biological effects, resulting from transformation products
and/or disinfection byproducts. It is impossible to test all the thousands of
organic micropollutants in the urban water cycle experimentally to assess
potential adverse outcomes of an oxidation. Rather, we need multidisciplinary
and automated knowledge-based systems, which couple predictions of kinetics,
transformation and disinfection byproducts and their toxicological con-
sequences to assess the overall benefits of oxidation processes. A wide range of oxidation processes has been developed in
the last decades with a recent focus on novel electricity-driven oxidation processes. To evaluate these processes, they have to be
compared to established benchmark ozone- and UV-based oxidation processes by considering the energy demands, economics,
the feasibilty, and the integration into future water treatment systems.

■ INTRODUCTION

At the beginning of the 20th century, chemical oxidants (e.g.,
chlorine, ozone) were introduced in municipal water treatment
for disinfection in industrialized countries, which are the focus
of this paper.1,2 The combination of chemical disinfection with
sand filtration led to a dramatic decrease of waterborne
diseases.1 Though, this was recognized as a major advance, the
detection of the disinfection byproduct (DBP) chloroform in
the mid-1970s3,4 followed by the discovery of hundreds of
other halogenated DBPs formed during chlorination and the
potential link between DBPs and bladder cancer or
miscarriages5 led to substantial changes in water treatment
practices. DBPs are formed from the reactions of chemical
oxidants with matrix components such as the dissolved organic
matter (DOM), bromide and iodide.6−8 During ozonation,
DBPs such as bromate9 and oxygen-rich compounds such as
aldehydes, ketones and carboxylic acids are formed from
reactions with bromide or DOM, respectively.10−12 In response
to concerns about DBPs, other disinfectants such as chlor-
amine6 or chlorine dioxide13 were applied in distribution
systems. This led to significantly lower THM formation,
however, other DBPs such as N-nitrosodimethylamine
(NDMA)14,15 or chlorite/chlorate,16,17 respectively, were
formed.

The trade-off between disinfection and DBP formation (i.e.,
between acute and chronic toxicity) has to be carefully
evaluated.6,8 Generally, disinfection has the highest priority
and should not be compromised by the control of DBPs.18

Nevertheless, in some countries, the use of chlorine and/or
chemical disinfection in distribution systems has been entirely
discontinued to avoid public health consequences and chlorine-
induced taste and odor problems.19,20 Such changes require a
very rigorous approach focusing on water resources protection,
natural attenuation, multibarrier treatment, and careful
maintenance of distribution systems.21

■ OXIDATIVE ABATEMENT OF ORGANIC
MICROPOLLUTANTS

Range of oxidation processes. Almost in parallel to
chemical disinfection, oxidative control of aesthetic parameters
such as iron(II) and Mn(II),22−24 color and taste and odor25

and other inorganic contaminants (sulfide, nitrite and
ammonia) was implemented in water treatment.26−28 Later
on, oxidative treatment was applied for abatement of synthetic
organic compounds (micropollutants) due to their widespread
detection in drinking water sources.5,29,30
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Numerous chemical oxidants have been tested alone or in
combination with adsorption (activated carbon) or tight
membrane processes for an optimized abatement of micro-
pollutants (Figure 1). The tested chemical oxidation processes
include ozone (O3) and the corresponding advanced oxidation
processes (AOPs), O3/H2O2, O3/UV to enhance hydroxyl
radical (•OH) formation,27,31 ultraviolet light (UV) combined
with H2O2 to produce •OH,32−34 permanganate,35,36 bisulfite-
activated permanganate,37,38 the (photo)-Fenton process,33,39

UV combined with S2O8
− or HSO5

− to produce sulfate
radicals40−47 and their application for in situ chemical
oxidation48,49 and ferrate(VI).50,51 A significant effort was
made over decades to develop photocatalytic water treat-
ment.52−55 However, some researchers were skeptical already at
an early stage of investigations on TiO2-based photocatalysis,
and also today there are only limited niche applications.56−59

Overall, in drinking water practice, most full-scale processes
employ homogeneous ozone- or •OH-based processes due to
their broadband action against many different classes of
micropollutants,27,60 their maturity and/or relatively low energy
demand, the controllable formation of DBPs and the relatively
easy implementation at full-scale (Figure 1).2,32,61,62

From Kinetics to Transformation Products. In early
applications of oxidation processes, most studies focused on the
disappearance of target compounds.63−66 However, already
during the development phase of oxidation processes,
researchers recognized that typical chemical oxidant doses
applied in water treatment do not yield full mineralization of
most target compounds, but instead transformation products
are formed.67−70 Despite the parallel research on disinfection
byproduct formation, this fact was largely neglected until the
new EU drinking water regulation in 1998 applied the same
standard for pesticides and transformation products/metabo-
lites.71 Especially in France, this came as an unpleasant surprise,
because many drinking water treatment plants had been

upgraded to use the O3/H2O2 process in the late 1990s as a
means of treating atrazine and other herbicides.72−74

Subsequently, the O3/H2O2 process was banned in France
for treatment of source waters containing pesticides; today it is
only approved in France for the treatment of chlorinated
compounds.75 After this caesura, more research efforts were
dedicated to the identification of transformation products from
common contaminants (e.g., atrazine, methyl tert-butyl ether,
dioxane) and model compounds to provide insights into
oxidative reaction mechanisms.76−82

Transformation Products and Effects. The number of
studies on the formation of oxidative transformation products
increased significantly in the early 2000s concomitantly with
the development of analytical methods such as liquid
chromatography (LC) coupled with high resolution mass
spectrometry.5,83 This resulted in a significant mechanistic
knowledge gain for oxidation processes involving •OH84,85 and
O3,

27,86,87 which enabled the compilation of pathway prediction
systems for transformation reactions induced by •OH88 and
O3.

89 Researchers also studied ferrate,51,90,91 chlorine,26,92−106

bromine,107,108 permanganate109 and chlorine dioxide,110−114

adding to the mechanistic understanding. This wealth of
information triggered new worries about the formation of
potentially toxic transformation products.115 Attempts to
couple mechanistic information to toxicological consequences
led to three major cases for transformation products that can be
distinguished (Figure 2):

Oxidative Treatment Leads to a Loss of the Primary
Biological Activity Caused by the Parent Compound (Lower
Red Curve in Figure 2). Numerous toxicological studies have
demonstrated that the primary or secondary attack of an
oxidant (most studies for O3 and/or •OH) on a target
compound leads to a proportional loss of the primary biological
effects for various classes of compounds such as antimicrobial
agents,116−121 estrogenic compounds,122−124 herbicides125 and
insecticides.126

The Transformation Products of Biologically Active
Molecules Are (Potentially) Regulated Compounds with
Higher Toxicity than the Parent Compound (Upper Red
Curve in Figure 2). A case in point is the formation of
chloroform during chlorination of triclosan, an antimicrobial
agent.105,127 Even though in this case the antimicrobial activity
of the target compound is lost, a new effect arises. This problem
is even aggravated, by the photochemical formation of dioxins
from chlorinated triclosan released to the aquatic environ-
ment.106 Another example is the formation of NDMA during
chloramination of ranitidine-containing water.128,129

Formation of Toxic/Bioactive Compounds from Target
Compounds with Low Biological Activity (Upper Red Curve
in Figure 2). N,N-dimethylsulfamide, a nontoxic metabolite of
the fungicide tolylfluanide, is transformed to the genotoxic N-
nitrosodimethylamine (NDMA) during ozonation.130,131

NDMA was also formed during ozonation of secondary
wastewater effluents containing antiyellowing agents.132 In
another example the attack of •OH on quinoline led to an
estrogenic compound, however, with a very low potency.133

■ THE OXIDATION DILEMMA
Oxidant Reactions with DOM. For simplicity, most

mechanistic studies on contaminant oxidation are conducted
in ultrapure water. However, under realistic conditions, the
largest fraction of chemical oxidants is consumed by DOM
(Figure 3).134−136 Much of this is due to oxidation of phenolic

Figure 1. Comparison of various chemical oxidants/processes for the
abatement of micropollutants in municipal water treatment. Feasible
processes are in the upper left corner (low DBP formation, oxidation
of a broad range of micropollutants and a high feasibility (maturity and
low energy demand). The arrows for chlorine dioxide and chlorine
show that their feasibility is higher than shown in the picture, because
they are widely applied in water treatment. Example how to read the
graph: Mn(VII) has low formation of DBPs, a high feasibility (already
widely applied in water treatment) but is a very selective oxidant,
which does not warrant oxidation of a wide range of micropollutants.
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moieties in DOM (1−2 mmol/gDOC, that is, μM DOM-
phenol concentrations).137 This is much higher than micro-
pollutant concentrations of ≪0.1 μM in natural waters and
wastewater effluents.30,138

The reaction of DOM with ozone and/or •OH leads to the
formation of oxygen-rich byproducts (e.g., aldehydes, ketones
and carboxylic acids) in total concentrations often >100 μg/
L,139,140 which is significantly above the sum of the
concentrations of micropollutants (ca. 25 μg/L) detected in a
wastewater treatment plant effluent after ozonation.138 There-
fore, oxygen-rich byproducts may contribute more to the
toxicity/biological effects of the treated water than micro-
pollutants (Figure 2, blue line).141 Cases in point are the
formation of toxic α,β-unsaturated enedials and oxoenals during
UV treatment of phenols in presence or absence of H2O2 or the
formation of quinones or catechols during ozonation.142−144 In
line with the formation of such products, it has been observed
that the toxicity to certain aquatic organisms increases after
wastewater ozonation, with mostly an improvement after a
biological treatment step (Figure 2, dashed blue line).141,145−147

Since these oxygen-rich byproducts are often easily biodegrad-
able, a biological post-treatment step is routinely implemented
after an oxidation/AOP in drinking water and wastewater
effluents.11,138−141,148−150 So far, there is not sufficient
information to assess the efficiency of biological post-treatment
for transformation product abatement. However, it has been
shown that various nitrogenous transformation products (e.g.,

N-oxides) are not removed in biological post-treatment after
ozonation of a municipal wastewater effluent (Figure 2,
horizontal dashed red lines).138 Nevertheless, it can be expected
that ozone transformation products of aromatic compounds or
olefins are more biodegradable than their parent compounds
(Figure 2, descending dashed red lines).86

Bromide in Oxidative Water Treatment. Bromide plays
a special role in oxidative water treatment because it can be
oxidized to bromine, a reactive secondary oxidant, by some
common oxidants.107 Bromine reacts with DOM to produce
brominated byproducts (Br-DBPs), which are typically more
toxic than the chlorinated analogues.151,152 If these Br-DBPs are
formed, they are mostly recalcitrant during biological post-
treatment (Figure 2, horizontal dashed blue line). For advanced
oxidation processes such as O3/H2O2 or UV/H2O2, these DBPs
are less important, because the transient bromine concentration
is typically low and the bromine-reactive precursors are
consumed by ozone and/or •OH. The major drawback for
ozone-based treatment of bromide-containing waters is the
formation of bromate,153 which is a possible human carcinogen
with drinking water and ecotoxicological standards of 10 and 50
μg/L bromate, respectively.154,155 Bromate removal (e.g., by
biological post-treatment) after its formation is not a viable
option (Figure 2, dashed green line) and its formation has to be
minimized/avoided as much as possible.9,27,153,154,156−164

Compared to conventional ozonation, the O3/H2O2 process
leads to a significantly lower bromate formation.157

Trade-off between Energy Consumption and Bromate. In
contrast to ozone-based processes, the UV/H2O2 process does
not lead to bromate formation in bromide-containing waters
(Supporting Information (SI) Figure S1).157,165 However, the
energy consumption for the abatement of micropollutants to
10% of their initial concentrations, the electrical energy per
order (EEO), is generally about 4−20 times higher (0.17−2.3
kWh/m3) for the UV/H2O2 process than for the O3/H2O2
process (0.04−0.25 kWh/m3).166,167 Therefore, there is a trade-
off between bromate formation and energy consumption, O3/
H2O2 is favored at lower and UV/H2O2 at higher bromide
concentrations.168 If disinfection is an additional criteria, the
UV/H2O2 process has a superior performance, because the high
UV fluences for this AOP lead to an efficient inactivation of
microorganisms (SI Figure S1).167 In contrast, only limited
inactivation can be achieved by the O3/H2O2 process, because
the ozone exposure is reduced due to its hydrogen peroxide
induced decomposition to •OH, which is a weak disinfec-
tant.27,169

Figure 2. Relative evolution of toxicity (human health) and/or
biological effects during oxidative treatment of micropollutant-
containing waters as a function of the oxidant dose/exposure and
the extent of biological post-treatment. MP: micropollutant; DOM:
dissolved organic matter; TPs: Transformation products; DBPs:
Disinfection byproducts; AOC: Assimilable organic carbon; BDOC:
Biodegradable organic carbon.

Figure 3. Relative contribution of the various water solutes to the consumption of oxidants. The DOM is by far the major consumer of oxidants
during water treatment, followed by bromide (and in some cases iodide) depending on their concentrations. Compared to these matrix components,
micropollutants only contribute minimally to the oxidant consumption. Disinfection byproducts are formed from the reactions of oxidants with the
matrix components, whereas the oxidation of micropollutants leads to transformation products.
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■ AN UNEXPECTED REVIVAL OF OXIDATION
PROCESSES WITH A SIGNIFICANT KNOWLEDGE
GAIN

Enhanced Wastewater Treatment. After a research and
development phase of almost two decades,170−172 the Swiss
authorities decided to upgrade about 15% of the country’s
municipal wastewater treatment plants to reduce the load of
organic micropollutants to the aquatic environment.173−177

This development was triggered by detection of pharmaceut-
icals, endocrine disruptors and personal care products in
municipal wastewater effluents,178−182 combined with ecolog-
ical studies suspecting/demonstrating the effect of endocrine
disruptors on fish populations.183−187 In Germany and France
similar approaches are currently being assessed.145,147,188−190

Overall, the European approach is guided by mostly ecological
concerns, with an added benefit for drinking water, which is
often abstracted from rivers (i.e., riverbank filtration) down-
stream of wastewater effluent discharges.
Water Reuse. The recent increase in municipal water reuse

is mainly driven by water security (e.g., Singapore191) and water
scarcity in arid areas, which is often aggravated by climate
change, population growth and competition for water resources
with agriculture.192,193 A case in point is California, where water
was initially recycled for industrial and agricultural purposes
and then for drinking water production.194,195 Recently, a
rigorous framework of multibarrier advanced water treatment
systems was implemented to fulfill the criteria for direct water
reuse and the surface water treatment rule.194,196−198 All of the
suggested direct potable reuse treatment trains in California
include an ozonation and/or UV/H2O2 process combined with
pre- or post-treatment with reverse osmosis for disinfection and
the abatement of micropollutants.194

Decentralized Systems. In the future, centralized
municipal water systems may be partially replaced by more
localized systems, due to the high cost of maintaining aging
infrastructure of drinking water and wastewater networks as
well as the rapid development of megacities. To support low
maintenance water treatment in decentralized systems,
electricity-based systems will likely prove to be advantageous
both for disinfection and for oxidation of micropollu-
tants.193,199−201

Finding the Needle in the Haystack. The Analytical
Approach. The uncertainty about transformation products
being formed during oxidation might become a barrier to these
developments as already shown for the atrazine example above.
The application of LC-high resolution MS-based analytical
methods and data processing tools led to the detection of
hundreds of micropollutants and their biological/oxidative
transformation products in wastewater matrices.138,202−204

Currently, the interpretation of such data sets is very limited
and we need a better connection to mechanistic studies and
toxicity databases. The detection of new compounds often
triggers kinetic and mechanistic studies of oxidation reactions of
randomly selected micropollutants, which only leads to limited
progress in the field. Rather, the emphasis should be on
fundamental studies on selected functional groups, which are
transferrable to micropollutants containing the same chemical
moieties.27 Several promising approaches are discussed below.
Prediction of Reaction Kinetics for Oxidation Reactions.

The efficiency of an oxidative treatment depends directly on the
reaction kinetics. There is already a large kinetic database for
the reactions of various oxidants such as •OH,205 ozone,27

chlorine,26 chlorine dioxide,206 bromine107 with organic
micropollutants. In addition, several approaches, such as
quantitative structure activity relationships (QSARs), quantum
chemical computations (reactions with ozone or •OH) and the
group contribution method (•OH) have been applied to
predict second order rate constants for the reactions of organic
compounds with oxidants.26,63,107,207−211 These empirical
correlations yield predictions within a factor of 3 of the
measured values,208 which is within the range of variation in
measured second order rate constants from different
laboratories.27

Prediction of Transformation Products. In addition to
understanding the kinetics of compound abatement, the
elucidation of transformation pathways for oxidative treatment
of micropollutants is a tedious process involving labor-intense
experiments with product analysis by various methods (e.g.,
GC -MS/MS , LC -MS/MS , NMR , e t c . ) (F i gu r e
4a).27,76−78,85,86,108,110,114,117,212−224 Identification of the prod-
ucts of 10% of the 100 000 most common products in
commerce145 could cost over 100 million USD for each oxidant
assuming a very optimistic average time of 3 months per
compound for a product study. This cost would be augmented
by the thousands of new chemicals, which are registered every
year.145 This theoretical exercise demonstrates that such a
comprehensive screening is unlikely to occur. Instead, we need
a prioritization and fundamental studies with model com-

Figure 4. Two approaches dealing with large numbers of compounds
during oxidation processes. (a) Experimental approach with kinetic
and mechanistic studies, toxicological assessment and elucidation of
problematic compounds by effect-driven analyses. (b) In silico
assessment of micropollutants by prediction of transformation
products and potential (eco)toxicological risks. For (b), experimental
studies will only be performed with critical compounds.
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pounds, which can be extrapolated to the vast number of
detected compounds. To compile and explore such data in a
comprehensive manner, tiered screening methods are needed
(Figure 4b). Such approaches have been used for biological
transformation products of organic chemicals over the last
decades.225−228 Similarly, pathway prediction platforms have
been developed recently for •OH88 and for ozone reactions.89

The latter platform determines second order rate constants for
the reactions of ozone-reactive moieties and predicts potential
products based on >100 reaction rules.89 This allows an
interpretation of results from nontarget analyses of oxidation
processes229 and a rapid screening of possible transformation
products for potentially toxic structures for, e.g., known
carcinogenic groups (Figure 4b).230,231 There are numerous
in silico prediction methods for mutagenicity, modes of action
and ecotoxicity, which have been implemented in software
packages.232−234 Only after a predicted compound is identified
and suspected to cause a potential risk, it will be necessary to
conduct laboratory studies on its formation, stability, fate and
toxicity.

■ SEARCHING FOR THE SILVER BULLET
Future urban water systems may include both centralized and
decentralized components with water reuse of e.g., gray water
and concentrate streams.193 Whereas, centralized water systems
will probably rely on well-established oxidation/disinfection
methods, in decentralized systems (point-of-entry/use) elec-
tricity-based methods such as UV irradiation and electro-
chemical production of oxidants such as chlorine, hydrogen
peroxide and ozone bear a huge potential because they are
independent of the transport of chemicals.201,235−237 In recent
years, the portfolio of chemical oxidation has been expanded to
search for higher energy efficiency and lower DBP formation.
Often, combined/hybrid processes are tested, however, an
imperative comparison to the current benchmark oxidation
processes ozonation, O3/H2O2 and UV/H2O2 is often missing.
Ozone-Based Processes. Heterogeneous ozonation pro-

cesses have been widely studied to enhance the transformation
of ozone to hydroxyl radicals.238 A recently developed catalyst
was efficient in reducing bromate formation with an efficient
abatement of ozone-resistant micropollutants such as atra-
zine.239 However, the optimal concentration of the catalyst of
0.5 g/L (500g/m3) causes substantial problems related to the
process design. The potential gain in efficiency is impaired by
the problems related to heterogeneous processes, such as
separation, fouling and deactivation of the catalyst, bleeding of
potentially toxic elements and costs of the catalysts.
Furthermore, natural and H2O2-induced ozone decomposition
have hydroxyl radical yields of about 50%,27,240 wherefore, the
margin for improvement is only about a factor of 2 if a process
leads to 100% transformation of ozone to hydroxyl radical.
Hence, the homogeneous O3/H2O2 process seems a more

reasonable approach for bromate control by keeping the
dissolved ozone concentration very low.241

To this end, optimized processes involving membranes (SI
Figure S2a), multiple static mixers or multiple injection ports
for ozone transfer to hydrogen peroxide-containing waters can
be applied to warrant very low transient ozone concentrations
leading to almost neglect bromate formation.241−243 Hydrogen
peroxide can be produced electrochemically onsite and on
demand as in the electro-peroxone process (SI Figure S2a),244

avoiding the transport of chemicals and enhancing the flexibility
of the process.

UV-Based Processes. Vacuum UV (VUV, UV radiation
<200 nm) has been studied as a chemical free AOP for
decades.245 However, its application at scale has been limited
because only a thin layer of water can be treated with an EEO
of about 1 kWh/m3 for micropollutant abatement.246 An
interesting application with a reduced energy demand could be
a combination of VUV irradiation with ozone formed in the gas
phase (SI Figure S2b)246 Alternatively, a combined VUV and
UV system yielding a relatively energy efficient abatement of
atrazine, similar to a conventional UV/H2O2 process was used
for treatment of a few L/min,167,247 making it interesting for a
combined disinfection/oxidation in point-of-use systems.
Recently, the UV/chlorine process has gained a lot of

attention. In this process, the photolysis of chlorine yields
hydroxyl radicals, chlorine atoms and ozone, which may lead to
a more efficient abatement of micropollutants and inactivation
of chlorine-resistant microorganisms.248−252 The formation of
organic chlorinated DBPs does not seem to be a major issue,
but inorganic DBPs such as chlorate and in bromide-containing
waters, bromate, are formed at significant levels and have to be
carefully evaluated before implementing this process.248,253,254

The UV/chlorine process is more efficient for micropollutant
abatement compared to UV/H2O2 at low pH (i.e., 5.5) in
reverse osmosis permeates in water reuse systems, whereas it is
less efficient in the near neutral pH range.255 The UV/
chloramine process seems to be an interesting variant in the
context of water reuse, where chloramines are already present
to avoid RO membrane fouling.255,256

LED-Based Processes. Some UV-based processes such as
visible-to-UVC up-conversion and photovoltaics-driven or
standalone UV-light emitting diodes (LED) are in develop-
ment. Among different approaches numerous investigators have
speculated about the advantages of UV/LEDs for disinfection
in small-scale point-of-use/entry systems.257−260 Even though
the development of UV-LEDs has made significant progress in
the past decade, the energy efficiency is still quite low (i.e., in
the order of 1 to a few percent).261−263 The further
development of these devices will almost certainly be driven
by applications other than water treatment due to the relatively
small size of the current market.264 Furthermore, the lifetime of
UV LED, a major advantage of visible LEDs, is still very limited.
For visible LEDs, a price drop of a factor of 10 per decade with
a 20-fold increase of photon flux per lamp occurred. This
development jump was possible due to the application of LEDs
as LCD backlights.265 Overall, it is unlikely, that UV/LEDs will
play a major role in water treatment over the next two decades
without a substantial research and development effort.

Electrochemical Processes. Electrochemical processes
have undergone a revival in recent years, due to the promise
for transformation of chemicals just by electricity.266 However,
there are still many obstacles to overcome, such as the
formation of oxidation byproducts, undesired side reactions,
mass transfer limitations and high energy demand, which may
prevent their application in large-scale water treatment.235,266

However, there seems to be potential for small-scale onsite
treatment applications. One example is a combined electro-
chemical-UV system, which uses hydrogen peroxide produced
in a gas diffusion cathodic cell in a UV/H2O2 reactor and the
residual hydrogen peroxide is destroyed by chlorine, produced
at the anode after the AOP (SI Figure S2c).201 Although, this
system needs some optimization, it illustrates the great
potential of electrochemical processes to achieve oxidation,
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disinfection, and to provide a residual disinfectant after
treatment.
In contrast, the oxidation of micropollutants by hydroxyl

radicals and other reactive species formed on electrode surfaces,
such as boron-doped diamond (BDD) electrodes, has low
efficiency due to the diffusion limitations, competition with
DOM and electrode surface limitation.267 In addition, costs and
electrode stability are still an issue for BDDs.
Plasma, Sonolysis, Natural and Synthetic Enzymes.

Plasma-based and sonolysis processes have been studied for
water treatment for several decades. Although they can oxidize
contaminants,268 cost-effective applications seem to be far away
or even impossible due to their high energy demand and
significant up-scaling issues.33,269−272 Recently, ozone gener-
ators based on microplasma have become available and seem to
be an attractive alternative at small-scale to conventional ozone
generators.273

The application of natural and synthetic enzymes has been
suggested as a sustainable option for water treatment.274,275

However, there are still limitations to these processes (see SI
Text 1).

■ OXIDATION PROCESSES: THE WAY FORWARD

The dilemma of water treatment processes not being selective
to specific target compounds is a severe limitation and a
practical inevitability for oxidation processes. The ubiquitous
matrix components reduce the treatment efficiency during
oxidation and may lead to unintended consequences, such as
disinfection byproducts. Furthermore, micropollutants are not
removed during oxidation but transformed to a multitude of
products. During sequential transformation processes, the
concentration of individual transformation products decreases
(oxidative dilution) but in some cases the transformation
products are more toxic than the parent compounds.
How do we guarantee that the risks of this approach do not

outweigh the benefits? Unfortunately, the risk cannot be
entirely eliminated, however, it can be minimized by a rigorous
assessment approach. The following questions need to be
addressed for an optimum application of oxidation processes.
Will the Oxidation Process Achieve the Needed

Decrease in Micropollutant Concentrations? Kinetics is
key to the efficiency of an oxidation process. With existing
knowledge, we can estimate oxidation kinetics, which is mostly
sufficient to estimate the oxidative abatement efficiency in real
systems. For novel oxidation processes, the overall energy
demand and operating costs need to be similar or below
benchmarked processes such as chlorination, ozonation or UV-
based processes. The efficiency of novel processes tends to
improve as technologies are further developed. For distributed
treatment systems, a higher energy demand is justifiable,
because no/minimal energy-intensive transport of water is
required in these cases.
Research needs: Further development of kinetics prediction

tools based on quantum chemical computations for existing and
emerging oxidation technologies.
What Is the Risk of the Formation of Toxic Trans-

formation Products? For certain oxidants and functional
groups, transformation product formation can be assessed by
computer-based prediction tools. A combination of these tools
with advanced analytical methods allows the elucidation of
transformation products and their potential toxicological
consequences.

Research needs: The focus of further experimental research

should be based on missing basic information related to

functional groups and oxidants, which is applicable to whole

classes of micropollutants. Improved workflows and data

analysis for target and nontarget analyses are required and we

need a better understanding of what is formed from the

oxidation of micropollutants versus the organic matrix.

Sensitive, robust, standardized and high throughput toxico-

logical test systems with various human toxicological and

ecotoxicological end points need to be developed.
What Are the Implications of Oxidation of the Matrix

Components? Due to the variability and complexity of natural
or effluent DOM, the prediction of DBPs is still in its infancy.
Research needs: Quantification of reactive functional groups

in DOM for a better prediction of the efficiency of oxidation

and of the formation of ensuing products.
Which Is the Best Oxidative Treatment Option? Based

on the complexity of oxidation processes, there is a need for

broadband and tailored oxidation processes combined with

other treatments, to remove transformation products and take

advantage of multiple barriers. Mostly biological and/or

adsorptive post-treatment after oxidation should be applied,

because of their benefits for abatement of oxygenated DBPs

and/or transformation products. The portfolio of oxidation

processes should consider applications at various scales from

municipal systems to single users and recognize the way that

other water quality aspects (e.g., bromide) affect the perform-

ance.
Research needs: Further development of electricity-driven

processes, which avoid transport and storage of chemicals and

are applicable at various scales. Furthermore, there is a need for

improved engineering design to allow scaling up of these

processes. Development of better models for activated carbon

adsorption and further developments of computer-based

prediction tools to assess biological transformation of

disinfection byproducts and transformation products.
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